首页> 外文OA文献 >Sparse Representation for 3D Shape Estimation: A Convex Relaxation Approach
【2h】

Sparse Representation for 3D Shape Estimation: A Convex Relaxation Approach

机译:三维形状估计的稀疏表示:凸松弛   途径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the problem of estimating the 3D shape of an object defined bya set of 3D landmarks, given their 2D correspondences in a single image. Asuccessful approach to alleviating the reconstruction ambiguity is the 3Ddeformable shape model and a sparse representation is often used to capturecomplex shape variability. But the model inference is still a challenge due tothe nonconvexity in optimization resulted from joint estimation of shape andviewpoint. In contrast to prior work that relies on a alternating scheme withsolutions depending on initialization, we propose a convex approach toaddressing this challenge and develop an efficient algorithm to solve theproposed convex program. Moreover, we propose a robust model to handle grosserrors in the 2D correspondences. We demonstrate the exact recovery property ofthe proposed method, the advantage compared to the nonconvex baseline methodsand the applicability to recover 3D human poses and car models from singleimages.
机译:我们研究在给定单个图像中2D对应关系的情况下估计由一组3D界标定义的对象的3D形状的问题。减轻重构模糊性的成功方法是3D可变形形状模型,并且稀疏表示通常用于捕获复杂的形状可变性。但是由于形状和视点的联合估计导致优化的非凸性,因此模型推断仍然是一个挑战。与之前的工作依赖于交替方案且解决方案取决于初始化的工作相反,我们提出了一种凸方法来解决这一挑战,并开发了一种有效的算法来解决所提出的凸程序。此外,我们提出了一个健壮的模型来处理2D对应中的重大错误。我们证明了该方法的精确恢复特性,与非凸基线方法相比的优势以及从单幅图像中恢复3D人体姿势和汽车模型的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号